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EFFECT OF NONISOTHERMAL CONDITIONS OF SKIN FRICTION IN SUBSONIC 

TURBULENT CHANNEL FLOWS 

D. I. Lamden, I. L. Mostinskii, 
and M. B. Reznikov 

UDC 536.24:532.517.4 

A number of different approaches areavailablein current literature to the theoreti- 
cal determination of skin friction in nonisothermal flows in channels and pipes. 
Some of these (e.g., [I-3]) predict an appreciably stronger dependence of skin fric- 
tion on temperature ratio ~ = Tw/T~ (T w is the wall temperature; T~ is the core 
fluid temperature), than those indicated by experimental results [4-7]. Signifi- 
cantly better agreement with existing experimental results is achieved in [8, 9] 
based on comprehensive numerical analysis of a system of integrodifferential equa- 
tions. However, the assumptions they make are not always sound nor physically 
clear. Besides, the use of numerical methods does not allow the authors to relate 
their analysis to known limiting laws and simultaneously develop reliable numeri- 
cal expressions to generalize experimental data. Physically quite clear results 
have been obtained in [10-12] and, in particular, very simple limiting laws for 
skin friction have been established. At the same time, it appears that based on 
the same physically clear assumptions, it is possible to obtain even more general 
results which agree well with experimental data. Simultaneously, these results 
which coincide with the limiting values at infinite Reynolds number make it pos- 
sible to indicate the limits of applicability of these laws and extend them to 
finite Reynolds number range. 

The problem is reduced to the consideration of stable turbulent fluid flow in a channel. 
In order to simplify the problem it is assumed that laminar and turbulent Prandtl numbers are 
equal to one and that the specific heat is independent of temperature. The temperature T and 
velocity v distributions are then described by 

* = O( ~ + ~)ldv/dyl,  q = --P%(~" + ~D (dT/dy),  (1) 

where v M and v T are molecular and eddy viscosity coefficients; p is the density; v is the 
shear stress; q is the heat flux. Assume that T and q vary linearly along the channel sec- 
tion (it will later be shown that this simplifying assumption is quite adequate for the de- 
termination of skin friction coefficients): 

= ~ l Y l l ( h l 2 ) ,  q = q ~ l Y l l ( h l 2 ) ,  (2) 
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where T w and qw are the shear stress and heat flux at the wall; y is the transverse coordi- 
nate measured from the axis of the channel with half width h/2. The dependence of v M and O 
on temperature is assumed to be: 

~ , ~ = G ( T I T ~ ) %  ~)= p,~(TJT), (3) 

M and ~w a r e  the  r e s p e c t i v e  v a l u e s  a t  T = T w and ~ i s  a c o n s t a n t  ( u s u a l l y  ~ ~ 1 . 5 - 2 . 0 ) .  where v w 
As far as the dependence of eddy viscosity vT is concerned the most rational (in any case, 
in the near-wall region) choice seems to be the hypothesis relating some local turbulence 
scale or mixing length to the distance from the wall [13]. The mathematical expression of 
the hypothesis on the local structure is based on the assumption of a universal relation be- 
tween vT/~ M and the nondimensional parameter q = l T/~70/(~M), i.e., the universal function 

F: 

~ / ~  = F 0 1 ) .  

Here l, p, v M, and T are local values of turbulence scale, density, molecular viscosity, and 
shear stress, ~ ~ 0.4 is the Karman--Prandtl mixing length.' On the other hand, the applica- 
tion of this hypothesis at the fluid core leads to certain doubts since the high turbulence 
level in this region is caused not so much by production as by diffusion of turbulent fluc- 
tuations from thin near-wall regions. In our view the synthesis of turbulent flow character- 
istics in the near-wall region and in the inviscid core is most successfully achieved by 
Reichardt equation [14] which is modified to ensure localization in the near-wall regions~: 

' M~O5 

where T = T/Tw; y = y/(h/2); ~; = 5;/(h/2) is the nondimensional thickness of the laminar 
sublayer v* = ~ i s  the friction velocity based on density in the near-wall region. It 
is possible to verify that Eq. (4) reduces to the well-known Prandtl equation for eddy vis- 
cosity in the near-wall region: 

~ /v ,~  = ( l l / ~ - -~ -@/~  ~, 1 - - •  - -  lYl). 

On the other hand, when 1 -- ]y] << I, T ~ Tw, and, consequently, Eq. (4) satisfies the local 
equilibrium condition in the near-wall region. In order to determine the laminar sublayer 
thickness 6L in Eq. (4), we note that for local equilibrium requirements, the nondimensional 
laminar sublayer thickness ql should be identical (usually q L = 11.5) for isothermal as well 
as for nonisothermal conditions. This requirement leads to the following expression coupling 
5~, nondimensional temperature at the laminar sublayer edge T~. and Vw: 

. t (h/2) ~.1l/2_ ~ ~v" = q P  ( 5 )  
~2 w 

Let  us now c o n s i d e r  the  computa t ion  of  t empe ra tu r e  and v e l o c i t y  p r o f i l e s  us ing  Eqs. (1) 
and Eqs. (2 ) ,  (3 ) ,  and (4 ) .  Note,  f i r s t l y ,  t h a t  in  view of the assumptions  (2 ) ,  v e l o c i t y  
and t e mpe ra tu r e  p r o f i l e s  a re  s i m i l a r  and, hence ,  the  f o l l o w i n g  e x p r e s s i o n s  hold  good: 

v/v~ = ( l ' - -  T~) / (To~-  Tw), qwvoo/(v~oc~,(Too- 1'~,)) == 1. (6) 

i n t e g r a t i n g  the  second equa t i on  of  the system (1) us ing  Eqs. (6) and (4 ) ,  the  f o l l o w i n g  ex-  
p r e s s i o n s  for temperature profiles are obtained: 

1)(t I 1), I I l<s , (7a) l'~=1+a-yv~ ~ i ~ - -  -- -- 

= 2• (T~o 1)]n 1 q- 2g (7b) 1 - 7 "  l-l l> z 

Here ~* - Vw/Voo; ~ M ~" T~ = T~/Tw; Re w = v~h/~J~ is Reynolds number based on wall conditions. Equa- 
V W -- ~ 

�9 " 

tion (7a) makes it posslble to express v w in terms of ~L and TL. In its turn is determined 
from (5) as a function of T7" Finally, 

~The double deck variant of Reichardt equation is chosen here to obtain closed form analytical 
expressions. 
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On the other hand, from matching temperature profiles (7a) and (7b) at the edge of laminar 
sublayer, the following equation is obtained 

n~l/2--ob [ "~t~ 1) ]II ------ I ( 1 0 )  
2 . . . .  [ ' 1 / 2  *'~I/2 ~ /465T~i (Tco I '~,205-- 1 

to determine, T~ as a function of the input parameters T~ and Re w to complete the solution 
to the problem. Actually, having determined T Z from (10), it is possible to find 5~ and v* 
from (8) and (9) and then determine the temperature and velocity distribution using Eqs. (6), 
(7a), and (7b). The results thus obtained can be reformulated in terms of Re~ using the ob- 
vious relation 

Re~ = Re~T~ =, 

The d e p e n d e n c e  o f  T~ on Re w f o r  v a r i o u s  v a l u e s  o f  T~ ( i~  = 0 . 4 ,  q l  = 1 1 . 5 ,  and  a = 1 . 8 )  i s  
shown p l o t t e d  i n  F i g .  1 a s  an  e x a m p l e  o f  t h e  s o l u t i o n  t o  Eq .  ( 1 0 ) .  

C o n s i d e r  now t h e  d e t e r m i n a t i o n  o f  s k i n  f r i c t i o n  w h i c h  c a n  b e  d e f i n e d  i n  two w a y s ,  w i t h  
density p based on wall conditions or the inviscid core: 

"c~ = - 2 -  p~v~ = " 5 -  ~ '~ '=" ( 11 ) 

Thus, the following relation exists between skin friction coefficients based on density at 
the wall and in the inviscid core: 

= 2V .2 Using (9) we get It follows from (11) that Cfw w �9 

(12) 

(13) 

Equation (13) does not have sufficient physical clarity. In particular, there is no explicit 
dependence on Reynolds number, and the transition to isothermal case is not clear, when T~, TZ § 
I. In order to obtain an expression for skin friction in a more conventional and anal ytl- 
cally convenient form, Eq. (10) is transformed using Eq. (13), resulting in the following 

.c + ( 
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2 2 Y~I~'- ~ ~-lj~. "2 I.''~ - i H c ] ' ~ = ( ~ l '  H~l=2~z ~-- t  l ' HRew=2a'~-----~i" (14) 
\ ~ "T ~ /  T l 

E q u a t i o n  (14) i s  i d e n t i c a l  in  fo rm to  P r a n d t l V s  u n i v e r s a l  s k i n  f r i c t i o n  f o r m u l a .  The c o r -  
r e c t i o n  f a c t o r s  H c f v ,  Hq l ,  and HRe w p r e s e n t  i n  (14) a p p r o a c h  u n i t y  as  1:oo -> 1, i . e . ,  i n  t he  
l i m i t i n g  i s o t h e r m a l  f l o w .  Thus ,  f o r  t h e  i s o t h e r m a l  c a s e  Eq. (14) becomes 

., 
-Z = ~l " (15) 

i The same expression for cf can be obtained directly by using Reichardt equation for iso- 
thermal flow. 

Equation (15) differs from Prandtl's skin friction formula only by the factor 3/4 within 
the logarithmic sign which makes it possible to take into account the turbulence level in the 
inviscid core more accurately than it is done on the basis of logarithmic velocity profile. 
Skin friction coefficients computed from Eq. (15) do not differ by more than 3% from those 
obtained from the well-known empirical formula [15]. 

As an example of using these relations, consider the extensively studied problem of 
limiting skin friction coefficients (as Re § =) and their agreement with existing experimen- 
tal data. The simplest of these 

(2) cj=/cf== ~ z ~ + t  ~r Re=-..-,~oo, (16) 

obtained in [10] is based on turbulent boundaryTlayer theory with negligible viscosity and 
is also applicable to the present case. Here c~ is the skin friction coefficient (15) for 
isothermal flow with Reynolds number Re~ based on core conditions. Actually, as Re~ § 
(consequently, also Rew § ~) the temperature T l at the edge of the laminar sublayer approaches 
unity, as s~en from Eq. (10). Hence the corrections H~l and HRe w in (14) also tend to unity. 
Thus, in the present limiting case, Eq. (14) becomes 

\ c,. [ 1 (3Rewr 2 /2 ( 2 ) ~  
2 = ~ + --~ In k'-~.~ ,-v- ~ .-.+- (ln Rew) -2 ~ +  t" ( 1 7) 

It follows from Eq. (15) that 

c~/2-+ (In Rew) -2 ~ r  R e ~ - +  ~ ,  

and hence we finally obtain from Eq. (17) and (12) the relations [12]: 

cj=Tc~==T=clJc~==( 2 ) ~~ IE+(  ' (18) 

i 
where Cfw is the skin friction coefficient for the isothermal flow with Reynolds number equal 
to Re w. Finally, since in Re~ = In (RewT~ ~) + inRe w in the present limit and by writing the 
following asymptotic series 

4 = / 2  ~ (In Be=) -2  ~ (In Rew)-2 ~ c~/2, 
we arrive at the limiting formula for skin friction in the form (16). The intermediate posi- 
tion in the asymptotic series transforming (18) to (16) is occupied by the limiting law 
recommended in [11, 16] from considerations of best fit with experiment. It is suggested 
there that to obtain c~, Reynolds number should be determined on the basis of density at the 

core and viscosity at the wall. It follows from the above that the skin friction at finite 
Reynolds numbers should be most accurately described by Eq. (18) and least accurately by Eq. 
(16). This is clearly seen from Figs. 2 and 3 where accurate computations based on Eqs. (10) 
and (13) are compared with limiting values (18) and (16) (dashed dotted lines in Figs. 2 and 
3 refer to limiting laws (18) and (16), respectively; a = 1.8 in Fig. 2 and a = 1.64 in Fig. 
3). In particular, only at absolutely unrealistic Reynolds numbers (Re~ ~ I~ e~ does Eq. 
(16) quite accurately reflect the behavior of cf. At the same time, Eq. (18) approaches 
suggested numerical values even in the range Rew ~ 105-10 ~. However, even Eq. (18) can also 
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lead~to errors of the order of 50-100% (see Fig. 2) in the case of cooling with Re w ~ I0'-I0 5 
and T~ ~ 5. 

A comparison of Figs. 2 and 3 shows that it is more convenient to refer to wall temper- 
ature Tw in obtaining the values of physical quantities involved in the determination of cf. 
In this case, equations for efw as a function of T~ are monotonic and regular, i.e., their 
qualitative nature does not change at different Reynolds numbers. In addition, the deviation 
of curves with Reynolds numbers is considerably less when referred to wall conditions (though, 
according to the above discussions, this deviation can reach appreciable magnitudes). 

Unfortunately, in most experiments, the physical parameters are referred to fluid core 
conditions. It made the interpretation of these results difficult. In particular, experi- 
mental results at different Re~ have frequently, and without any basis, exhibited contradic- 
tions with each other and the existing theoretical concepts (see, e.g., [5]). Figure 3 can 
be used to explain the cause for such a "confusion" in different experimental results. Actu- 
ally, in low Reynolds number (Re= ~ J05) flows with cooling, an increase in T~ initially 

l leads to a gradual increase in cf~/cf= and after reaching a maximum it starts decreasing, 
becoming less than one at very realistic values of temperature ratio T= ~ 3-4. At Re~ = 104 
the curve is always below one. Thus, for given Reynolds numbers and temperature ratio, cf 
decreases with increase in T~. This conclusion is confirmed by results of [6] (Re~ = 4000- 
10,000). It is necessary to mention that the accuracy of existing experimental results, as a 
rule, does not exceed 10-12%. Hence the authors of [4, 5] who conducted tests in the widely 
studied range Re~ = 104-106 came to the conclusion that cf~ is independent of T~. As an 
example the experimental results [5] are shown by the hatched region in Fig. 3. A good agree- 
ment is observed with theoretical curves for the same range of Reynolds numbers 104-4.105 
used in the experiments. On the other hand, an increase in skin friction coefficient has 
been observed in [17-19] with an increase in @~, which also follows from Fig. 3 at suffi- 
ciently large values of Re~. Thus, in the case of cooling, depending on conditions, it is 
possible to observe an increase in resistance with an increase in T~. 

As regards heating the flow (T~ < I), a decrease in T~ should, as a rule, be accompanied 
by a decrease in cf= according to Fig. 3. A good agreement (accurate within 10%) is observed 
with the well-known empirical formula [7]: 

obtained for the range Re~ = 105-106 (dashed line in Fig. 3). As already mentioned above, 
the limiting formula (18) is fulfilled quite accurately even at finite Reynolds numbers Re~ 
in the case of heating. Good agreement with many experimental results for this condition 
(heating) [11] can be considered a confirmation of the analysis presented here. 

The transformation carried out here for skin friction in the form (13) for nonisothermal 
flow into an expression written in the form (14), therefore, makes it possible to establish 
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complete agreement of this solution with the known limiting laws for isothermal as well as 
nonisothermal flow conditions. Besides, Eq. (14) makes it possible to express more clearly 
the nature of the dependence of results on one or the other parameter. At the same time the 
determination of corresponding corrections (excluding the already mentioned limiting cases 
T~ § I or Re § ~) requires the determination of the quantity T I from (10). In view of this, 
the practical computations can be more simply carried out directly from Eq. (13) for cf with 
T7 from Eq. (10). The volume of computations is considerably reduced in this case and there 
is no need to solve Eq. (14) for cfw (or to use corresponding approximations). 
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